
Thesis Title

Second Line if Necessary

by

Author Name

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Master of Science

Queen’s University

Kingston, Ontario, Canada

March 2010

Copyright c© Author Name, 2010

Abstract

This is my abstract.

i

Acknowledgments

Blah blah blah.

ii

Statement of Originality

Only required by CHEM, COMPUTING, GEOL, MATH and Physics (Ph.D. ONLY!).

iii

Contents

Abstract i

Acknowledgments ii

Statement of Originality iii

Contents iv

List of Tables vi

List of Figures vii

Chapter 1: Introduction 1
1.1 Section . 1

1.1.1 SubSection . 1
1.2 Motivation . 1
1.3 Problem . 1
1.4 Objective . 1

1.4.1 Hypothesis . 2
1.5 Contributions . 2
1.6 Organization of Thesis . 2

Chapter 2: Background 3
2.1 UML . 3
2.2 Conformance Checking . 3

2.2.1 Multiple Definitions . 3

Chapter 3: Alloy 5
3.1 The Alloy Language . 5

3.1.1 Example . 6

Chapter 4: Embee: User Perspective 7

iv

4.0.2 Phase 1: High-Level Static Mapping 8

Chapter 5: Embee: Implementation and Analysis 10
5.1 Complexity and Performance . 11

5.1.1 Definition of Terms . 11

Chapter 6: Summary and Conclusions 14
6.1 Summary . 14
6.2 Future Work . 14
6.3 Conclusion . 14

Bibliography 15

Appendix A: Alloy Analyzer 16
A.1 Documentation . 16

Appendix B: Additional Analysis 17
B.1 Calculation of Arity . 17
B.2 Comparison of N . 18

B.2.1 Reasoning about N in terms of n 18
B.3 Estimation of F . 20

B.3.1 Test Series . 21

v

List of Tables

5.1 Running times for each phase and total running time of Embee 12

B.1 Example arity calculations . 17

B.2 Estimate of Boolean formula size . 20

B.3 Test series for evaluating the running time of conformance checking . 21

vi

List of Figures

4.1 Excerpt of high-level static mapping file 8

4.2 Visualization of tree . 8

4.3 Visualization of tree after deletion of root (error or omission) 9

5.1 Sample specification and implementation 10

B.1 Equations to compute arity of relations 18

vii

1

Chapter 1

Introduction

1.1 Section

1.1.1 SubSection

SubSubSection

Paragraph

SubParagraph

1.2 Motivation

...the current de facto standard being the Unified Modeling Language (UML) [1]...

1.3 Problem

1.4 Objective

1.5. CONTRIBUTIONS 2

Note: These are the section headings that I decided to use. Check out several recent
theses to decide how you want to lay out your introduction (and conclusion) chapters.

1.4.1 Hypothesis

1.5 Contributions

1.6 Organization of Thesis

We proceed by introducing conformance checking and discussing related work in the

next chapter. We discuss the Alloy language and the Alloy Analyzer tool in Chap-

ter 3. Chapter 4 describes our Embee tool, from the user’s perspective, with several

running examples. Implementation details and the analysis of the tool are presented

in Chapter 5. Chapter 6 concludes and outlines future work.

3

Chapter 2

Background

2.1 UML

Unified Modeling Language (UML) is a standardized general-purpose modeling lan-

guage in the field of software engineering.

2.2 Conformance Checking

2.2.1 Multiple Definitions

• checking “whether an implementation conforms to some given design” [3]

• ensuring “that the actual software (the detailed design and code) conforms to

the architecture” [2]

• etc. etc.

For our research, we are adopting the following definitions of conformance check-

ing:

Conformance checking is the process of comparing...

We further refine our definition with the following caveats:

2.2. CONFORMANCE CHECKING 4

1. Our version of conformance checking .

2. We distinguish between checking and ensuring...

Don’t forget to discuss related work!!!

5

Chapter 3

Alloy

3.1 The Alloy Language

Alloy is...

Quantifiers There are five quantifiers available in Alloy:

Quantifier Meaning
all x : e | F universal, F is true for every x in e

some x : e | F existential, F is true for some x in e

no x : e | F F is true for no x in e

sole x : e | F F is true for at most one x in e

one x : e | F F is true for exactly one x in e

Signatures and Fields

The simple signature sig A {} introduces A as a basic type with a set of atoms of

that type. A refers to the set of atoms; the type is inferred by Alloy and cannot be

referenced explicitly.

sig A {}

sig B {

f : A

}

3.1. THE ALLOY LANGUAGE 6

3.1.1 Example

An excerpt from an Alloy specification of a singly-linked list is presented in Listing 3.1.

Listing 3.1 Excerpt of a simple Alloy specification for a singly-linked list

sig Node { sig List {

next : option Node first : Node

} }{

all n : Node | n in first.*next

no n : Node | n in n.^next

}

7

Chapter 4

Embee: User Perspective

Listing 4.1 Alloy specification of a singly-linked list using only binary relations

module List

sig Node {

next : option Node

}

sig List {

first : Node

}

fact NodeInOneList {

all n : Node | one l : List | n in (l.first).*next

}

fact NoCycle {

all n : Node | n ! in n.^next

}

fun Show() {}

run Show for 4

8

4.0.2 Phase 1: High-Level Static Mapping

...Phase 1 simply generates the default static mapping and presents it to the user, as

shown in Figure 4.1(a). We have modified the map file as shown in Figure 4.1(b).

List = List

List$first = List.first

Node = Node

Node$next = Node.next

(a) Default static mapping

List = SimpleList

List$first = SimpleList.first

Node = Node

Node$next = Node.next

(b) Modified static mapping

Figure 4.1: Excerpt of high-level static mapping file before and after modification

Figure 4.2 shows the tree before and after deletion, with correctly implemented

code. Figure 4.3 on the next page shows the tree after deletion of the root, when the

root = n2 statement is not executed.

(a) Before deletion (b) After correct deletion

Figure 4.2: Visualization of tree before and after correct deletion of the root node

9

Figure 4.3: Visualization of tree after deletion of the root node, with an error of
omission in the code. Node 7 represents the temporary node in the
swapNodes() method.

10

Chapter 5

Embee: Implementation and Analysis

Listing 5.1 Excerpt from StateDumperThreads.java, showing how to connect to a
second virtual machine executing the target code. In this example, the target class
is referenced by javaClassName. The JPDA classes can be accessed by including
the tools.jar archive in the program’s classpath; this archive is found in the Java
installation’s lib directory

//import com.sun.jdi.Bootstrap; com.sun.jdi.VirtualMachine; com.sun.jdi.connect.Connector;

//com.sun.jdi.connect.LaunchingConnector;

...

LaunchingConnector connect = Bootstrap.virtualMachineManager().defaultConnector();

Map connectorArguments = connect.defaultArguments();

Connector.Argument main = (Connector.Argument) connectorArguments).get("main");

main.setValue(javaClassName);

...

VirtualMachine vm = connect.launch(connectorArguments);

sig Node {

next : Node

}

(a) Specification of bi-
nary next relation

class Node {

Node next;

}

(b) Implementation of
binary relation in (a)

sig Tree {

next : Node -> Node

}

(c) Specification of
ternary next relation

Figure 5.1: Sample specification and implementation of a binary relation; sample
specification of a ternary relation

5.1. COMPLEXITY AND PERFORMANCE 11

5.1 Complexity and Performance

5.1.1 Definition of Terms

The following terms...:

scope The maximum number of objects...

R The number of relations...

ri The ith relation in the specification, 1 ≤ i ≤ R.

arity(ri) The arity of relation ri...

N The total number...

Given the calculated arities of a particular specification’s relations, and

the scope at a specific breakpoint, Equation 5.1 can be used to determine

N .

N = S × scope +
R∑
i=1

scopearity(ri) (5.1)

The combined complexity of all four steps is

O(N) + O(nN) + O(N2) + O(F)

Again, these steps are completed once for every breakpoint in the target program’s

execution; therefore, the overall upper bound becomes

b×O(N) + b×O(nN) + b×O(N2) + b×O(F)

= O(bN + bnN + bN2 + bF)

5.1. COMPLEXITY AND PERFORMANCE 12

The vector [x0 x1] represents the two possible atoms of type X. With our naming

scheme, x0 represents X 0 and x1 represents X 1. The binary relation itself is repre-

sented by a two-dimensional bit matrix where a 1 in position [i,j] means that there

is a mapping between the ith atom of X and the jth atom of Y:

r00 r01

r10 r11

X 0->Y 0 X 0->Y 1

X 1->Y 0 X 1->Y 1

Now, consider a fact stating that relation r is total, i.e.,

all x : X | some y : Y | x.r = y

The CNF formula for our example fact, in scope 2, is

¬(((x0 ∧ r00) ∨ (x1 ∧ r10)) ∧ ¬((x0 ∧ r01) ∨ (x1 ∧ r11)))∧

¬(¬((x0 ∧ r00) ∨ (x1 ∧ r10)) ∧ ((x0 ∧ r01) ∨ (x1 ∧ r11)))

Table 5.1 contains...

Table 5.1: Running times for each phase and total running time of Embee

Test Case Running Time (m:ss)

Object Number of Phase 3
Model

Scope
Breakpoints

Phase 1 Phase 2
First 16 Last 4

Total

List 20 20 0:07 0:32 0:12 06:39 07:30

Graph 20 19a 0:07 1:27 0:35 44:10 46:19

Tree 20 20 0:04 1:20 0:21 06:04 07:49

a Breakpoints occur after the addition of each edge, i.e., the first breakpoint
does not occur until the second node is added.

5.1. COMPLEXITY AND PERFORMANCE 13

...upper bound on Embee’s performance:

upper bound is

O(bN2) if scope ≤ 16

O(bF) if scope > 16

14

Chapter 6

Summary and Conclusions

6.1 Summary

6.2 Future Work

6.3 Conclusion

BIBLIOGRAPHY 15

Bibliography

[1] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User

Guide. Addison-Wesley, 1999.

[2] Gert Florijn. RevJava: Design critiques and architectural conformance check-

ing for Java software. Technical report, Software Engineering Research Centre

(SERC), May 2002.

[3] Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-Evolution of

Object-Oriented Design and Implementation. PhD thesis, Vrije Unversiteit Brussel

(VUB), January 2001.

16

Appendix A

Alloy Analyzer

A.1 Documentation

Package: alloy.api

AlloyRunner

This class provides...

To do an analysis...

analyzeCommand Run the actual...

prepareSpec Parse...

translateCommand Translate...

17

Appendix B

Additional Analysis

B.1 Calculation of Arity

Examples of arity calculations are shown in Table B.1. These calculations can be

performed using either the equations listed in Figure B.1 on the next page...

Table B.1: Example arity calculations

relation ri arity(ri) arity equations used
f : A 2 (B.1), (B.2a)
f : option A 2 (B.1), (B.2a)
f : A -> A 3 (B.1), (B.2b), (B.3a)
f : A -> ? B 3 (B.1), (B.2b), (B.3a)
f : A -> B -> C 4 (B.1), (B.2b), (B.3c), (B.3a)
f : A -> B ? -> ! C 4 (B.1), (B.2b), (B.3a), (B.3c)
f : A -> B -> C -> D 5 (B.1), (B.2b), (B.3c), (B.3a)

B.2. COMPARISON OF N 18

Given:

v is a variable of type <var>, i.e., an id (identifier)
m is a multiplicity expression of type <multexpr>

r is a relation of type <relation>, i.e., r = v : m
e1, e2, ... are expressions of type <expr> in m
x is an optional set multiplicity modifier of type <setmult>

y, z are optional relation multiplicity modifiers of type <mult>

The arity equations are:

arity(r) = 1 + arity(m), where r is of the form v : m (B.1)

arity(m) =

{
1 if m is of the form x v (B.2a)

arity(e1) + arity(e2) if m is of the form e1 y -> z e2 (B.2b)

arity(e) =

1 if e is of the form id (B.3a)

arity(e1) if e is of the form (e1) (B.3b)

arity(e1) + arity(e2) if e is of the form e1 -> e2 (B.3c)

Figure B.1: Equations to compute arity of relations

B.2 Comparison of N

B.2.1 Reasoning about N in terms of n

It is possible to determine an upper bound on the size of N , relative to the size of n.

To do this, we re-examine Equation 5.1.

From Equation 5.1, we have:

N = S × scope +
R∑
i=1

scopearity(ri)

In the worst-case, the scope is equal to the total number of objects that exist at

B.2. COMPARISON OF N 19

a particular breakpoint, i.e., scope = n.

N = Sn +
R∑
i=1

narity(ri)

We can expand the summation to

N = Sn + narity(r1) + narity(r2) + ... + narity(rR)

Because...

O(N) = O(Sn) + O(narity(r1)) + O(narity(r2)) + ... + O(narity(rR))

We assume that all R relations in the specification have the same arity, and that

this arity is represented by a value x ≥ 2. Therefore...

O(N) = O(Sn) + R×O(nx)

= O(Sn) + O(Rnx) (B.4)

Equation B.4 demonstrates...

Because both S and R are finite numbers, it is possible to further reduce Equa-

tion B.4 to

O(N) = O(n) + O(nx)

= O(nx) (B.5)

Therefore...

B.3. ESTIMATION OF F 20

B.3 Estimation of F

For example, Table B.2 contains the values of F ...

Table B.2: Estimate of Boolean formula size, determined by number of Boolean op-
erators (“and”, “or”, “not”)

Example 1 - List
scope N 0 Facts 1 Fact 2 Facts

1 4 23 34 43
2 12 197 657 729
3 24 671 13,799 15,200
4 40 1,731 91,435 96,771

Example 2 - Graph
scope N Facts 1 Fact 2 Facts 3 Facts

1 — — — — —
2 16 185 1,005 1,783 2,181
3 42 674 66,722 118,250 142,328
4 88 1,787 635,811 1,153,063 1,319,611

Example 3 - Tree
scope N 0 Facts 1 Fact 2 Facts 3 Facts 4 Facts

1 7 39 78 93 103 104
2 22 367 1,601 2,487 2,629 2,715
3 45 1,283 38,528 73,472 76,196 76,568
4 76 3,359 234,595 456,459 466,979 468,087

B.3. ESTIMATION OF F 21

B.3.1 Test Series

Table B.3 summarizes...

Table B.3: Test series for evaluating the running time of conformance checking

Series Number Number
Name

Example S R arity(ri) of Facts
scope = n N

of Tests
E1F0 1 2 2 2, 2 0 1,2,...,40 4 - 3,280 40
E1F1 List 1 1,2,...,32 4 - 1,984 32
E1F2 2 1,2,...,31 4 - 1,984 31
E2F0 2 2 2 2, 3 0 2,3,...,40 16 - 65,680 39
E2F1 Graph 1 2,3,...,40 16 - 33,856 39
E2F2 2 2,3,...,34 16 - 33,856 33
E2F3 3 2,3,...,24 16 - 14,448 23
E3F0 2 3 4 2, 2, 2, 2 0 1,2,...,40 7 - 6,520 40
E3F1 Tree 1 1,2,...,40 7 - 6,520 40
E3F2 2 1,2,...,32 7 - 4,192 32
E3F3 3 1,2,...,32 7 - 4,192 32
E3F4 4 1,2,...,32 7 - 4,192 32

Total Number of Tests (Conformance Checks) 412

