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1. Introduction  

Single objective optimization algorithms are the basis of the more complex optimization 

algorithms such as multi-objective, niching, dynamic, constrained optimization algorithms 

and so on. Research on single objective optimization algorithms influence the development 

of the optimization branches mentioned above. In the recent years, various kinds of novel 

optimization algorithms have been proposed to solve real-parameter optimization problems.  

This special session is devoted to the approaches, algorithms and techniques for solving 

real parameter single objective optimization without knowing the exact equations of the test 

functions (i.e. blackbox optimization). We encourage all researchers to test their algorithms 

on the CEC’15 test suites. The participants are required to send the final results(after 

submitting their final paper version in March 2015)in the format specified in this technical 

report to the organizers. The organizers will present an overall analysis and comparison 

based on these results. We will also use statistical tests on convergence performance to 

compare algorithms that eventually generate similar final solutions. Papers on novel 

concepts that help us in understanding problem characteristics are also welcome. 

Results of 10D and 30D problems are acceptable for the first review submission. 

However, other dimensional results as specified in the technical report should also be 

included in the final version, if space permits. Thus, final results for all dimensions in the 

format introduced in the technical report should be zipped and sent to the organizers after the 

final version of the paper is submitted.  

Please note that in this competition error values smaller than 10-8 will be taken as zero. 

You can download the C, JAVA and Matlab codes for CEC’15 test suite from the 

website given below: 

http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2015/CEC2015.htm 

This technical report presents the details of benchmark suite used for CEC’15 

competition on learning based single objective global optimization.  
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1.1 Introduction to Learning-Based Problems 

As a relatively new solver for the optimization problems, evolutionary algorithm has 

attracted the attention of researchers in various fields. When testing the performance of a 

novel evolutionary algorithm, we always choose a group of benchmark functions and 

compare the proposed new algorithm with other existing algorithms on these benchmark 

functions. To obtain fair comparison results and to simplify the experiments, we always set 

the parameters of the algorithms to be the same for all test functions. In general, specifying 

different sets of parameters for different test functions is not allowed. Due to this approach, 

we lose the opportunity to analyze how to adjust the algorithm to solve a specified problem 

in the most effective manner. As we all know that there is no free lunch and for solving a 

particular real-world problem, we only need one most effective algorithm. In practice, it is 

hard to imagine a scenario whereby a researcher or engineer has to solve highly diverse 

problems at the same time. In other words, a practicing engineer is more likely to solve 

numerous instances of a particular problem. Under this consideration and by the fact that by 

shifting the position of the optimum and mildly changing the rotation matrix will not change 

the properties of the benchmark functions significantly, we propose a set of learning-based 

benchmark problems. In this competition, the participants are allowed to optimize the 

parameters of their proposed (hybrid) optimization algorithm for each problem. Although a 

completely different optimization algorithm might be used for solving each of the 15 

problems, this approach is strongly discouraged, as our objective is to develop a highly 

tunable algorithm to solve diverse instances of real-world problems. In other words, our 

objective is not to identify the best algorithms for solving each of the 15 synthetic 

benchmark problems.  

To test the generalization performance of the algorithm and associated parameters, the 

competition has two stages: 

Stage 1: Infinite instances of shifted optima and rotation matrixes can be generated. The 

participants can optimize the parameters of their proposed algorithms for each problem with 

these data and write the paper. Adaptive learning methods are also allowed. 
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Stage 2: A different testing set of shifted optima and rotation matrices will be provided 

to test the algorithms with the optimized parameters in Stage 1. The performance on the 

testing set will be used for the final ranking.  

1.2 Summary of the CEC’15 Learning-Based Benchmark Suite 

TableI. Summary of the CEC’15 Learning-Based Benchmark Suite 

 No. Functions Fi*=Fi(x*) 

Unimodal 

Functions 

1 Rotated High Conditioned Elliptic Function 100 

2 Rotated Cigar Function 200 

Simple 

Multimodal 

Functions 

3 Shifted and Rotated Ackley’s Function 300 

4 Shifted and Rotated Rastrigin’s Function 400 

5 Shifted and Rotated Schwefel’s Function 500 

Hybrid 

Functions 

6 Hybrid Function 1 (N=3) 600 

7 Hybrid Function 2 (N=4) 700 

8 Hybrid Function 3(N=5) 800 

Composition 

Functions 

9 Composition Function 1 (N=3) 900 

10 Composition Function 2 (N=3) 1000 

11 Composition Function 3 (N=5) 1100 

12 Composition Function 4 (N=5) 1200 

13 Composition Function 5 (N=5) 1300 

14 Composition Function 6 (N=7) 1400 

15 Composition Function 7 (N=10) 1500 

Search Range: [-100,100]D 

 

*Please Note:  

1. These problems should be treated as black-box problems. The explicit equations of the 

problems are not to be used. 

2. These functions are with bounds constraints. Searching beyond the search range is not 

allowed. 
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1.3 Some Definitions: 

All test functions are minimization problems defined as following: 

Min f(x), T
1 2[ , ,..., ] Dx x xx  

D: dimensions.   

T
1 1 2[ , ,..., ]i i i iDo o oo : the shifted global optimum (defined in “shift_data_x.txt”), which 

is randomly distributed in [-80,80]D. Each function has a shift data for CEC’14.  

All test functions are shifted to o and scalable.  

For convenience, the same search ranges are defined for all test functions. 

Search range: [-100,100]D. 

Mi:  rotation matrix. Different rotation matrices are assigned to each function and each 

basic function. 

The variables are divided into subcomponents randomly. The rotation matrix for each 

subcomponents are generated from standard normally distributed entries by Gram-Schmidt 

ortho-normalization with condition number c that is equal to 1 or 2. 

 

1.4 Definitions of the Basic Functions 
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4) Rosenbrock’s Function 
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5) Ackley’s Function  
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6) Weierstrass Function 
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7) Griewank’s Function 

2

7
1 1

( ) cos( ) 1
4000 

   
DD

i i

i i

x x
f

i
x                         (7) 

8) Rastrigin’s Function 
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9) Modified Schwefel’s Function 
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10) Katsuura Function 
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11) HappyCat Function 

1/4
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12) HGBatFunction 
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13) Expanded Griewank’s plus Rosenbrock’s Function  

13 7 4 1 2 7 4 2 3 7 4 1 7 4 1( ) ( ( , )) ( ( , )) ... ( ( , )) ( ( , ))    D D Df f f x x f f x x f f x x f f x xx (13) 

14) Expanded Scaffer’s F6 Function 

Scaffer’s F6 Function:
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14 1 2 2 3 1 1( ) ( , ) ( , ) ... ( , ) ( , )    D D Df g x x g x x g x x g x xx              (14) 

 

1.5 Definitions of the CEC’15Learning-Based Benchmark Suite 

A. Unimodal Functions: 

1) Rotated High Conditioned Elliptic Function 

1 1 1 1 1( ) ( ( )) *F f F  Mx x o                         (15) 

 
Figure 1.3-D map for 2-D function 
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Properties: 

 Unimodal 

 Non-separable 

 Quadratic ill-conditioned 

2) Rotated Cigar Function 

2 2 2 2 2( ) ( ( )) *F f F  Mx x o                       (16) 

 
Figure 2. 3-D map for 2-D function 

 

Properties: 

 Unimodal 

 Non-separable 

 Smooth but narrow ridge  

 
B. Multimodal Functions 

3) Shifted and Rotated Ackley’s Function  

3 5 3 3 3( ) ( ( )) *F f F  Mx x o                           (17) 
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Figure 3. 3-D map for 2-D function 

 

Properties: 

 Multi-modal  

 Non-separable 

4) Shifted and Rotated Rastrigin’s Function 

4
4 8 4 4

5.12( )
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Figure 4. 3-D map for 2-D function 

Properties: 

 Multi-modal  

 Non-separable 

 Local optima’s number is huge 

5) Shifted and Rotated Schwefel’s Function 
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Figure 5(a). 3-D map for 2-D function 

 

Figure 5(b).Contour map for 2-D function 

Properties: 

 Multi-modal  

 Non-separable 

 Local optima’s number is huge and second better local optimum is far from the 

global optimum. 

 

C. Hybrid Functions 

Considering that in the real-world optimization problems, different subcomponents of the 

variables may have different properties[8]. In this set of hybrid functions, the variables are 

randomly divided into some subcomponents and then different basic functions are used for 

different subcomponents.  

*
1 1 1 2 2 2( ) ( ) ( ) ... ( ) ( )    N N NF g g g FM M Mx z z z x         (20) 

F(x):   hybrid function 

gi(x):  ith basic function used to construct the hybrid function 
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N:   number of basic functions  

1 2[ , ,..., ]Nz = z z z  
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Properties: 

 Multi-modal or Unimodal, depending on the basic function 

 Non-separable subcomponents 

 Different properties for different variables subcomponents  

 

6) Hybrid Function 1 

N= 3 

p = [0.3,0.3,0.4] 

g1:  Modified Schwefel's Function f9 

g2:  Rastrigin's Function f8 

g3:  High Conditioned Elliptic Function f1 

7) Hybrid Function 3 

N= 4 

p =[0.2,0.2,0.3,0.3] 

g1:  Griewank's Function f7 

g2:  Weierstrass Function f6 

g3:  Rosenbrock's Function f4 

g4:  Scaffer's F6 Function f14 
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8) Hybrid Function 5 

N= 5 

p = [0.1,0.2,0.2,0.2,0.3] 

g1:  Scaffer’s F6 Function f14 

g2:  HGBat Function f12 

g3:  Rosenbrock’s Function f4 

g4:  Modified Schwefel’s Function f9 

g5:  High Conditioned Elliptic Function f1 

 
D. Composition Functions 

1
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i i i i
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F g bias Fx x                  (21) 

F(x): composition function    

gi(x):  ith basic function used to construct the composition function 

N:   number of basic functions  

oi:  new shifted optimum position for each gi(x), define the global and local optima’s 

position 

biasi: defines which optimum is global optimum  

i :  used to control each gi(x)’s coverage range, a small i  give a narrow range for 

that gi(x) 

i :    used to control each gi(x)’s height 

iw :  weight value for each gi(x), calculated as below: 
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Then normalize the weight 
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The local optimum which has the smallest bias value is the global optimum. The 

composition function merges the properties of the sub-functions better and maintains 

continuity around the global/local optima.  

Functions Fi’=Fi-Fi* are used as gi. In this way, the function values of global optima of gi 

are equal to 0 for all composition functions in this report.  

For some composition functions, the hybrid functions are also used as the basic functions. 

With hybrid functions as the basic functions, the composition function can have different 

properties for different variables subcomponents.  

9) Composition Function 1 

N = 3 

 = [20,20,20] 

 = [1, 1, 1] 

bias =[0, 100, 200]+F9* 

g1 

 Schwefel's Function 

g2,g3: 

 Rotated Rastrigin’s Function 

 Rotated HGBat Function 

 
Figure6(a). 3-D map for 2-D function (example) 
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Figure6(b).Contour map for 2-D function (example) 

Properties: 

 Multi-modal 

 Non-separable 

 Different properties around different local optima 

 The basic function of which the global optimum belongs to is fixed. The sequence of 

the other basic functions can be randomly generated. 

10) Composition Function 2 

N = 3 

 = [10, 30,50] 

 = [1, 1, 1] 

bias =[0, 100, 200]+F10* 

g1, g2, g3:   

 Hybrid Function 1 

 Hybrid Function 2 

 Hybrid Function 3 

Properties: 

 Multi-modal  

 Non-separable 

 Asymmetrical 

 Different properties around different local optima 

 Different properties for different variables subcomponents  
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 The sequence of the basic functions can be randomly generated. 

11) Composition Function 3 

N = 5 

 = [10, 10, 10, 20, 20] 

 = [10, 10, 2.5, 25,1e-6] 

bias =[0, 100, 200, 300, 400]+F11* 

g1:   

 Rotated HGBat Function 

g2, g3,g4,g5:   

 Rotated Rastrigin’s Function 

 Rotated Schwefel's Function 

 Rotated Weierstrass Function 

 Rotated High Conditioned Elliptic Function 

 
Figure 8(a). 3-D map for 2-D function (example) 

 
Figure8(b).Contour map for 2-D function (example) 
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Properties: 

 Multi-modal  

 Non-separable 

 Asymmetrical 

 Different properties around different local optima 

 The basic function of which the global optimum belongs to is fixed. The sequence of 

the other basic functions can be randomly generated. 

 

12) Composition Function 4 

N = 5 

 = [10,20,20,30,30] 

 = [0.25, 1, 1e-7, 10, 10] 

bias =[0, 100, 100, 200, 200]+F12* 

g1,g2, g3,g4,g5:   

 Rotated Schwefel's Function 

 Rotated Rastrigin’s Function 

 Rotated High Conditioned Elliptic Function 

 Rotated Expanded Scaffer’s F6 Function 

 Rotated HappyCat Function 

 
Figure9(a). 3-D map for 2-D function (example) 
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Figure9(b).Contour map for 2-D function (example) 

 

Properties: 

 Multi-modal  

 Non-separable 

 Asymmetrical 

 Different properties around different local optima 

 Different properties for different variables subcomponents  

 The sequence of the basic functions can be randomly generated 

 

13) Composition Function 5 

N = 5 

 = [10, 10, 10, 20, 20] 

 = [1, 10, 1, 25, 10] 

bias =[0, 100, 200, 300, 400]+F13* 

g1, g2, g3, g4, g5:   

 Hybrid Function 3 

 Rotated Rastrigin’s Function 

 Hybrid Function 1 

 Rotated Schwefel's Function 

 Rotated Expanded Scaffer’s F6 Function 
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Properties: 

 Multi-modal  

 Non-separable 

 Asymmetrical 

 Different properties around different local optima 

 The sequence of the basic functions can be randomly generated 

 

14) Composition Function 6 

N = 7 

 = [10, 20, 30, 40, 50, 50, 50] 

 = [10,2.5, 2.5, 10,1e-6,1e-6, 10] 

bias =[0, 100, 200, 300,300,400, 400]+F14* 

g1:   

 Rotated HappyCat Function 

g2, g3, g4, g5, g6, g7:   

 Rotated Expanded Griewank’s plus Rosenbrock’s Function 

 Rotated Schwefel's Function 

 Rotated Expanded Scaffer’s F6 Function 

 Rotated High Conditioned Elliptic Function 

 Rotated Cigar Function 

 Rotated Rastrigin’s Function 

 
Figure 10(a). 3-D map for 2-D function (example) 
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Figure 10(b).Contour map for 2-D function (example) 

Properties: 

 Multi-modal  

 Non-separable 

 Asymmetrical 

 Different properties around different local optima 

 The basic function of which the global optimum belongs to is fixed. The sequence of 

the other basic functions can be randomly generated. 

 

15) Composition Function 7 

N = 10 

 = [10, 10, 20, 20, 30, 30, 40, 40, 50, 50] 

 = [0.1,2.5e-1, 0.1, 2.5e-2, 1e-3, 0.1, 1e-5, 10, 2.5e-2, 1e-3] 

bias =[0, 100, 100, 200, 200, 300, 300, 400, 400, 500]+F15* 

g1, g2, g3, g4, g5, g6, g7, g8, g9, g10: 

 Rotated Rastrigin’s Function 

 Rotated Weierstrass Function 

 Rotated HappyCat Function 

 Rotated Schwefel's Function 

 Rotated Rosenbrock's Function 

 Rotated HGBat Function 

 Rotated Katsuura Function 
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 Rotated Expanded Scaffer’s F6 Function 

 Rotated Expanded Griewank’s plus Rosenbrock’s Function 

 Rotated Ackley Function 

 
Figure 11(a). 3-D map for 2-D function (example) 

 
Figure 11(b).Contour map for 2-D function (example) 

Properties: 

 Multi-modal  

 Non-separable 

 Asymmetrical 

 Different properties around different local optima 

 The sequence of the basic functions can be randomly generated 
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2.Evaluation Criteria 

2.1 Experimental Setting 

Problems: 15 minimization problems        

Dimensions: D=10, 30, 50, 100 (Results only for 10D and 30D are acceptable for the initial 

submission; but 50D and 100D should be included in the final version) 

Runs / problem:51 (Do not run many 51 runs to pick the best run) 

MaxFES: 10000*D (Max_FES for 10D= 100000; for 30D=300000; for 50D = 500000; for 

100D = 1000000) 

SearchRange: [-100,100]D 

Initialization: Uniform random initialization within the search space. Random seed is based 

on time, Matlab users can use rand('state', sum(100*clock)). 

Global Optimum: All problems have the global optimum within the given bounds and there 

is no need to perform search outside of the given bounds for these problems. 

( *) ( ) * i i i iF F Fx o  

Termination: Terminate when reaching MaxFES or the error value is smaller than 10-8. 

2.1 Results Record 

1) Record function error value (Fi(x)-Fi(x*)) after (0.0001, 0.001, 0.01, 0.02, 0.03, 0.04, 

0.05, 0.1, 0.2, 0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0)*MaxFES for each run. 

In this case, 17 error values are recorded for each function for each run. Sort the error 

values achieved after MaxFES in 51 runs from the smallest (best) to the largest (worst) 

and present the best, worst, mean, median and standard variance values of function 

error values for the 51 runs. 

Please Notice: Error value smaller than 10-8 will be taken as zero. 

 

2) Algorithm Complexity 

a) Run the test program below: 

for i=1:1000000 
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x= 0.55 + (double)i; 

x=x + x; x=x/2; x=x*x; x=sqrt(x); x=log(x); x=exp(x); x=x/(x+2); 

end 

Computing time for the above=T0; 

b) Evaluate the computing time just for Function 1. For 200000 evaluations of a certain 

dimension D, it gives T1; 

c) The complete computing time for the algorithm with 200000 evaluations of the same D 

dimensional Function 1 is T2. 

d) Execute step c five times and get five T2 values. 2T


=Mean(T2) 

The complexity of the algorithm is reflected by: 2T


,T1, T0, and ( 2T


-T1)/T0 

The algorithm complexities are calculated on 10, 30, 50 and 100 dimensions, to show the 

algorithm complexity’s relationship with dimension. Also provide sufficient details on the 

computing system and the programming language used. In step c, we execute the complete 

algorithm fivetimes to accommodate variations in execution time due adaptive nature of 

some algorithms. 

Please Note: Similar programming styles should be used for all T0, T1 and T2. 

(For example, if m individuals are evaluated at the same time in the algorithm, the 

same style should be employed for calculating T1; if parallel calculation is employed for 

calculating T2, the same way should be used for calculating T0 and T1. In other word, 

the complexity calculation should be fair.) 

    

3) Parameters 

Participants are allowed to search for a distinct set of parameters for each problem. Please 

provide details on the following whenever applicable: 

a) All parameters to be adjusted;    

b) Corresponding dynamic ranges; 

c) Guidelines on how to adjust the parameters; 

d) Estimated cost of parameter tuning in terms of number of FEs; 

e) Actual parameter values used for each problem. 
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4) Results Format 

The participants are required to send the final results as the following format to the 

organizers and the organizers will present an overall analysis and comparison based on 

these results. 

Create one txt document with the name “AlgorithmName_FunctionNo._D.txt” for each test 

function and for each dimension.  

For example, PSO results for test function 5 and D=30, the file name should be 

“PSO_5_30.txt”. 

Then save the results matrix (the gray shadowing part) as Table II in the file: 

Table II. Information Matrix for D Dimensional Function X  

***.txt Run 1 Run 2 … Run 51

Function error values when FES=0.0001*MaxFES     

Function error values when FES=0.001*MaxFES     

Function error values when FES=0.01*MaxFES     

Function error values when FES=0.02*MaxFES     

Function error values when FES=0.03*MaxFES     

Function error values when FES=0.04*MaxFES     

Function error values when FES=0.05*MaxFES     

……     

Function error values when FES=0.9*MaxFES     

Function error values when FES=MaxFES     

 

Thus 15*4(10D, 30D, 50D and 100D)files (each file contains a 17*51matrix.) and a list of 

the parameters used for each function should be zipped and sent to the organizers.  

Notice:  All participants are allowed to improve their algorithms further after submitting 

the initial version of their papers to CEC2014. And they are required to submit their results 

in the introduced format to the organizers after submitting the final version of paper as soon 

as possible. 
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2.3ResultsTemple         

Language: Matlab 2013a 

Algorithm: Particle Swarm Optimizer (PSO) 

Results 

Notice: 

Considering the length limit of the paper, only Error Values Achieved with MaxFES are need 

to be listed. While the authors are required to send all results (15*4 files described in section 

2.2) to the organizers for a better comparison among the algorithms. 

Table III. Results for 10D 

Func. Best Worst Median Mean Std 

1      

2      

3      

4      

5      

6      

7      

8      

9      

10      

11      

12      

13      

14      

15      

 

Table IV. Results for 30D 

… 

Table V. Results for 50D 

… 

Table VI. Results for 100D 

… 
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Algorithm Complexity 

Table VII. Computational Complexity 

 T0 T1 2T


 ( 2T


-T1)/T0 

D=10 

 

   

D=30    

D=50    

D=100    

 

Parameters 

a) All parameters to be adjusted 

b) Corresponding dynamic ranges 

c) Guidelines on how to adjust the parameters 

d) Estimated cost of parameter tuning in terms of number of FES 

e) Actual parameter values used. 
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