- Parent Category: Unconstrained
- Category: 1-Dimension
- Hits: 4370
Problem No.11 (or Marsden-Weinstein's Function)
I. Mathematical Expression:
$$f(x)=-2\cos(x)-\cos(2x)$$
where:
\(\bullet\) \(-\frac{\displaystyle \pi}{\displaystyle 2} \leq x \leq 2\pi\)
\(\bullet\) It has two global maximum: \(f_{max}(x^*)=1.5\)
\(\bullet\) \(x^*=\{2.094395090000627, 4.188790191441036\}\) (determined by us using MapleSoft 2015)
II. Citation Policy:
If you publish material based on databases obtained from this repository, then, in your acknowledgments, please note the assistance you received by using this repository. This will help others to obtain the same data sets and replicate your experiments. We suggest the following pseudo-APA reference format for referring to this repository:
Ali R. Al-Roomi (2015). Unconstrained Single-Objective Benchmark Functions Repository [https://www.al-roomi.org/benchmarks/unconstrained]. Halifax, Nova Scotia, Canada: Dalhousie University, Electrical and Computer Engineering.
Here is a BiBTeX citation as well:
@MISC{Al-Roomi2015,
author = {Ali R. Al-Roomi},
title = {{Unconstrained Single-Objective Benchmark Functions Repository}},
year = {2015},
address = {Halifax, Nova Scotia, Canada},
institution = {Dalhousie University, Electrical and Computer Engineering},
url = {https://www.al-roomi.org/benchmarks/unconstrained}
}
III. 2D-Plot:
IV. MATLAB M-File:
% Problem # 11 (or Marsden-Weinstein's Function)
% Range of initial points: -pi/2 <= x <= 2*pi
% Two global maximum: x={2.094395090000627,4.188790191441036}
% f(x)=1.5
% Coded by: Ali R. Alroomi | Last Update: 25 Feb. 2015 | www.al-roomi.org
clear
clc
warning off
xmin=-pi/2;
xmax=2*pi;
R=100000; % steps resolution
x=xmin:(xmax-xmin)/R:xmax;
for i=1:length(x)
f(i)=-2*cos(x(i))-cos(2*x(i));
end
plot(x,f,'r','LineWidth',2);grid;set(gca,'FontSize',12);
xlabel('x','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('f(x)','FontName','Times','FontSize',20,'FontAngle','italic');
V. References:
[1] Jerrold Marsden, and Alan Weinstein, Calculus I, 2nd ed. New York: Springer-Verlag, 1985.
[2] Pierre Hansen, Brigitte Jaumard, and Shi-Hui Lu, "Global Optimization of Univariate Lipschitz Functions: II. New Algorithms and Computational Comparison," Mathematical Programming, vol. 55, no. 1-3, pp. 273-292, Apr.1992.
[3] Ali R. Alroomi, "The Farm of Unconstrained Benchmark Functions," University of Bahrain, Electrical and Electronics Department, Bahrain, Oct. 2013. [Online]. Available: http://www.al-roomi.org/cv/publications