- Parent Category: Unconstrained
- Category: 2-Dimensions
- Hits: 7754
Mishra's Function No.06
I. Mathematical Expression:
$$f(X)=-\log\left[\left(f_1(X)-f_2(X)+x_1\right)^2\right]+f_3(X)$$
where:
\(\bullet\) \(f_1(X)=\sin^2\left(\left[\cos\left(x_1\right)+\cos\left(x_2\right)\right]^2\right)\)
\(\bullet\) \(f_2(X)=\cos^2\left(\left[\sin\left(x_1\right)+\sin\left(x_2\right)\right]^2\right)\)
\(\bullet\) \(f_3(X)=0.1\left[\left(x_1-1\right)^2+\left(x_2-1\right)^2\right]\)
\(\bullet\) \(-10\leq x_i \leq 10\) , \(i=1,2\)
\(\bullet\) Best known solution: \(f_{min}(X^*) = -2.283949838474759\)
\(\bullet\) \(x^*_i = (2.886307215440481,1.823260331422321)\)
\(\bullet\) This function is firstly presented in [1] as a "New Function No.04". Because there are already functions named "Mishra's Function No.01 and No.02" (see n-dimensional benchmark functions), so this new function is re-named as "Mishra's Function No.06" [2, 3].
II. Citation Policy:
If you publish material based on databases obtained from this repository, then, in your acknowledgments, please note the assistance you received by using this repository. This will help others to obtain the same data sets and replicate your experiments. We suggest the following pseudo-APA reference format for referring to this repository:
Ali R. Al-Roomi (2015). Unconstrained Single-Objective Benchmark Functions Repository [https://www.al-roomi.org/benchmarks/unconstrained]. Halifax, Nova Scotia, Canada: Dalhousie University, Electrical and Computer Engineering.
Here is a BiBTeX citation as well:
@MISC{Al-Roomi2015,
author = {Ali R. Al-Roomi},
title = {{Unconstrained Single-Objective Benchmark Functions Repository}},
year = {2015},
address = {Halifax, Nova Scotia, Canada},
institution = {Dalhousie University, Electrical and Computer Engineering},
url = {https://www.al-roomi.org/benchmarks/unconstrained}
}
III. 2&3D-Plots:
IV. Controllable 3D Model:
- In case you want to adjust the rendering mode, camera position, background color or/and 3D measurement tool, please check the following link
- In case you face any problem to run this model on your internet browser (it does not work on mobile phones), please check the following link
V. MATLAB M-File:
% Mishra's Function # 6
% Range of initial points: -10 <= xj <= 10 , j=1,2
% Best known solution: (x1,x2)=(2.886307215440481,1.823260331422321)
% f(x1,x2)=-2.283949838474759
% Coded by: Ali R. Alroomi | Last Update: 24 May 2015 | www.al-roomi.org
clear
clc
warning off
x1min=-10;
x1max=10;
x2min=-10;
x2max=10;
R=1500; % steps resolution
x1=x1min:(x1max-x1min)/R:x1max;
x2=x2min:(x2max-x2min)/R:x2max;
for j=1:length(x1)
for i=1:length(x2)
f(i)=-log(((sin((cos(x1(j))+cos(x2(i))).^2)).^2-(cos((sin(x1(j))+sin(x2(i))).^2)).^2+x1(j)).^2)+0.1*((x1(j)-1).^2+(x2(i)-1).^2);
end
f_tot(j,:)=f;
end
figure(1)
meshc(x1,x2,f_tot);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
set(get(gca,'xlabel'),'rotation',25,'VerticalAlignment','bottom');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
set(get(gca,'ylabel'),'rotation',-25,'VerticalAlignment','bottom');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('3D View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(2)
mesh(x1,x2,f_tot);view(0,90);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('X-Y Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(3)
mesh(x1,x2,f_tot);view(90,0);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('X-Z Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(4)
mesh(x1,x2,f_tot);view(0,0);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('Y-Z Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
VI. References:
[1] S. Mishra, "Repulsive Particle Swarm Method on Some Difficult Test Problems of Global Optimization," Shillong, India, Oct. 2006. [Online]. Available: http://mpra.ub.uni-muenchen.de/1742/1/MPRA_paper_1742.pdf
[2] M. Jamil and X. S. Yang, "A Literature Survey of Benchmark Functions for Global Optimization Problems," International Journal of Mathematical Modelling and Numerical Optimisation, vol. 4, no. 2, pp. 150–194, Aug. 2013.
[3] A. Gavana, "Test Functions Index," Feb. 2013, [Accessed April 01, 2013]. [Online]. Available: http://infinity77.net/global_optimization/test_functions.html
[4] Ali R. Alroomi, "The Farm of Unconstrained Benchmark Functions," University of Bahrain, Electrical and Electronics Department, Bahrain, Oct. 2013. [Online]. Available: http://www.al-roomi.org/cv/publications