- Parent Category: Unconstrained
- Category: 2-Dimensions
- Hits: 18485
H1 Function
I. Mathematical Expression:
$$f(X)=\frac{\displaystyle \sin\left(x_1-\frac{x_2}{8}\right)^2+\sin\left(x_2+\frac{x_1}{8}\right)^2}{\displaystyle \sqrt{\left(x_1-\frac{36}{13}\pi\right)^2+\left(x_2-\frac{28}{13}\pi\right)^2}+1}$$
where:
\(\bullet\) \(-25\leq x_i \leq 25\) , \(i=1,2\)
\(\bullet\) \(f_{max}(X^*) = 2.0\)
\(\bullet\) \(x^*_i = (\frac{36}{13}\pi,\frac{28}{13}\pi)\)
\(\bullet\) The original reference of this function is [1]. The fractions of these two decision variables at the optimal point are rounded with four decimal places in [2], and hence the optimal cannot be reached. Based on that, I have adjusted these two elements with the exact values, so that the optimal point of \(f_{max} = 2.0\) can be satisfied.
II. Citation Policy:
If you publish material based on databases obtained from this repository, then, in your acknowledgments, please note the assistance you received by using this repository. This will help others to obtain the same data sets and replicate your experiments. We suggest the following pseudo-APA reference format for referring to this repository:
Ali R. Al-Roomi (2015). Unconstrained Single-Objective Benchmark Functions Repository [https://www.al-roomi.org/benchmarks/unconstrained]. Halifax, Nova Scotia, Canada: Dalhousie University, Electrical and Computer Engineering.
Here is a BiBTeX citation as well:
@MISC{Al-Roomi2015,
author = {Ali R. Al-Roomi},
title = {{Unconstrained Single-Objective Benchmark Functions Repository}},
year = {2015},
address = {Halifax, Nova Scotia, Canada},
institution = {Dalhousie University, Electrical and Computer Engineering},
url = {https://www.al-roomi.org/benchmarks/unconstrained}
}
III. 2&3D-Plots:
IV. Controllable 3D Model:
- In case you want to adjust the rendering mode, camera position, background color or/and 3D measurement tool, please check the following link
- In case you face any problem to run this model on your internet browser (it does not work on mobile phones), please check the following link
V. MATLAB M-File:
% H1 Function
% Range of initial points: -25 <= xj <= 25 , j=1,2
% Global maxima: (x1,x2)=(36*pi/13,28*pi/13)
% f(x1,x2)=2.0
% Coded by: Ali R. Alroomi | Last Update: 16 June 2015 | www.al-roomi.org
clear
clc
warning off
x1min=-25;
x1max=25;
x2min=-25;
x2max=25;
R=1500; % steps resolution
x1=x1min:(x1max-x1min)/R:x1max;
x2=x2min:(x2max-x2min)/R:x2max;
for j=1:length(x1)
for i=1:length(x2)
num=(sin(x1(j)-x2(i)/8)).^2+(sin(x2(i)+x1(j)/8)).^2;
den=sqrt((x1(j)-(36*pi/13)).^2+(x2(i)-(28*pi/13)).^2)+1;
f(i)=num/den;
end
f_tot(j,:)=f;
end
figure(1)
meshc(x1,x2,f_tot);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
set(get(gca,'xlabel'),'rotation',25,'VerticalAlignment','bottom');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
set(get(gca,'ylabel'),'rotation',-25,'VerticalAlignment','bottom');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('3D View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(2)
mesh(x1,x2,f_tot);view(0,90);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('X-Y Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(3)
mesh(x1,x2,f_tot);view(90,0);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('X-Z Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(4)
mesh(x1,x2,f_tot);view(0,0);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('Y-Z Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
VI. References:
[1] A. J. Knoek van Soest, and L. J. R. Richard Casius, "The Merits of a Parallel Genetic Algorithm in Solving Hard Optimization Problems," J Biomech Eng, vol. 125, no. 1, pp. 141-146, Feb. 2003.
[2] FĂ©lix-Antoine Fortin, "Distributed Evolutionary Algorithms in Python: Benchmarks," Feb. 2013, [Accessed June 16, 2015]. [Online]. Available: http://deap.gel.ulaval.ca/doc/0.8/api/benchmarks.html
[3] Ali R. Alroomi, "The Farm of Unconstrained Benchmark Functions," University of Bahrain, Electrical and Electronics Department, Bahrain, Oct. 2013. [Online]. Available: http://www.al-roomi.org/cv/publications