A+ A A-

I. Mathematical Expression:

$$f(X)=\frac{-100}{10\left[(x_1+1)^2-(x_2+1)^2\right]+x^2_1+4}$$

where:

\(\bullet\) \(-1.5\leq x_i\leq 1.5\) , \(-2.5\leq x_i\leq 0.5\)

\(\bullet\) \(f_{min}(X^*)=-25\)

\(\bullet\) \(x^*_i=0\)

 

II. Citation Policy:

If you publish material based on databases obtained from this repository, then, in your acknowledgments, please note the assistance you received by using this repository. This will help others to obtain the same data sets and replicate your experiments. We suggest the following pseudo-APA reference format for referring to this repository:

Ali R. Al-Roomi (2015). Unconstrained Single-Objective Benchmark Functions Repository [https://www.al-roomi.org/benchmarks/unconstrained]. Halifax, Nova Scotia, Canada: Dalhousie University, Electrical and Computer Engineering.

Here is a BiBTeX citation as well:

@MISC{Al-Roomi2015,
author = {Ali R. Al-Roomi},
title = {{Unconstrained Single-Objective Benchmark Functions Repository}},
year = {2015},
address = {Halifax, Nova Scotia, Canada},
institution = {Dalhousie University, Electrical and Computer Engineering},
url = {https://www.al-roomi.org/benchmarks/unconstrained}
}

 

III. 2&3D-Plots:

 

IV. Controllable 3D Model:

- In case you want to adjust the rendering mode, camera position, background color or/and 3D measurement tool, please check the following link

- In case you face any problem to run this model on your internet browser (it does not work on mobile phones), please check the following link

 

V. MATLAB M-File:

% Banana-Shape Function
% Range of initial points: -1.5 <= x1 <= 1.5 , -2.5 <= x2 <= 0.5
% Global minima: (x1,x2)=(0,0)
% f(x1,x2)=-25
% Coded by: Ali R. Alroomi | Last Update: 24 March 2015 | www.al-roomi.org

clear
clc
warning off

x1min=-1.5;
x1max=1.5;
x2min=-2.5;
x2max=0.5;
R=1500; % steps resolution
x1=x1min:(x1max-x1min)/R:x1max;
x2=x2min:(x2max-x2min)/R:x2max;
   
for j=1:length(x1)
   
    for i=1:length(x2)
        f(i)=-(100/(10*((x1(j)+1).^2-(x2(i)+1)).^2+x1(j).^2+4));
    end
   
    f_tot(j,:)=f;

end

figure(1)
meshc(x1,x2,f_tot);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
set(get(gca,'xlabel'),'rotation',25,'VerticalAlignment','bottom');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
set(get(gca,'ylabel'),'rotation',-25,'VerticalAlignment','bottom');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('3D View','FontName','Times','FontSize',24,'FontWeight','bold');

figure(2)
mesh(x1,x2,f_tot);view(0,90);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('X-Y Plane View','FontName','Times','FontSize',24,'FontWeight','bold');

figure(3)
mesh(x1,x2,f_tot);view(90,0);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('X-Z Plane View','FontName','Times','FontSize',24,'FontWeight','bold');

figure(4)
mesh(x1,x2,f_tot);view(0,0);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('Y-Z Plane View','FontName','Times','FontSize',24,'FontWeight','bold');

Click here to download m-file

 

VI. References:

[1] R.-B. Chen, W. Wang, and F. Tsai, "A Basis-Based Response Surface Method for Computer Experiment Optimization," Techincal Report, Institute of Statistics and Department of Applied Math., National University of Kaohsiung, 2006.
[2] W.-C. Chou, "Multiple Optima Problems in Higher Dimensions," Taipei, Taiwan, Mar. 2013, [Accessed April 25, 2013]. [Online]. Available: http://www.math.ntu.edu.tw/~wwang/cola_lab/test_problems/multiple_opt/multiopt_prob/
[3] Ali R. Alroomi, "The Farm of Unconstrained Benchmark Functions," University of Bahrain, Electrical and Electronics Department, Bahrain, Oct. 2013. [Online]. Available: http://www.al-roomi.org/cv/publications