- Parent Category: Unconstrained
- Category: 2-Dimensions
- Hits: 12137
Powell's Badly Scaled Function
I. Mathematical Expression:
$$f(X)=\left(10^4x_1x_2-1\right)^2+\left(e^{\displaystyle-x_1}+e^{\displaystyle-x_2}-1.0001\right)^2$$
where:
\(\bullet\) \(-10\leq x_i\leq 10\), \(i=1,2\)
\(\bullet\) \(f_{min}(X^*)=0\)
\(\bullet\) \(x^*_i \approx \left(1.098...\times 10^{-5},9.106...\right)\)
II. Citation Policy:
If you publish material based on databases obtained from this repository, then, in your acknowledgments, please note the assistance you received by using this repository. This will help others to obtain the same data sets and replicate your experiments. We suggest the following pseudo-APA reference format for referring to this repository:
Ali R. Al-Roomi (2015). Unconstrained Single-Objective Benchmark Functions Repository [https://www.al-roomi.org/benchmarks/unconstrained]. Halifax, Nova Scotia, Canada: Dalhousie University, Electrical and Computer Engineering.
Here is a BiBTeX citation as well:
@MISC{Al-Roomi2015,
author = {Ali R. Al-Roomi},
title = {{Unconstrained Single-Objective Benchmark Functions Repository}},
year = {2015},
address = {Halifax, Nova Scotia, Canada},
institution = {Dalhousie University, Electrical and Computer Engineering},
url = {https://www.al-roomi.org/benchmarks/unconstrained}
}
III. 2&3D-Plots:
IV. Controllable 3D Model:
- In case you want to adjust the rendering mode, camera position, background color or/and 3D measurement tool, please check the following link
- In case you face any problem to run this model on your internet browser (it does not work on mobile phones), please check the following link
V. MATLAB M-File:
% Powell's Badly Scaled Function
% Range of initial points: -10 < xj < 10 , j=1,2
% Global minima: (x1,x2)=(1.098...X10^-5,9.106...)
% f(x1,x2)=0
% Coded by: Ali R. Alroomi | Last Update: 24 March 2015 | www.al-roomi.org
clear
clc
warning off
x1min=-10;
x1max=10;
x2min=-10;
x2max=10;
R=1500; % steps resolution
x1=x1min:(x1max-x1min)/R:x1max;
x2=x2min:(x2max-x2min)/R:x2max;
for j=1:length(x1)
for i=1:length(x2)
f1(i)=(10000*x1(j)*x2(i)-1).^2;
f2(i)=(exp(-x1(j))+exp(-x2(i))-1.0001).^2;
f(i)=f1(i)+f2(i);
end
f_tot(j,:)=f;
end
figure(1)
meshc(x1,x2,f_tot);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
set(get(gca,'xlabel'),'rotation',25,'VerticalAlignment','bottom');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
set(get(gca,'ylabel'),'rotation',-25,'VerticalAlignment','bottom');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('3D View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(2)
mesh(x1,x2,f_tot);view(0,90);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('X-Y Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(3)
mesh(x1,x2,f_tot);view(90,0);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('X-Z Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(4)
mesh(x1,x2,f_tot);view(0,0);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('Y-Z Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
VI. References:
[1] S. S. Rao, Engineering Optimization: Theory and Practice, 4th ed. Hoboken, New Jersey: John Wiley & Sons, 2009.
[2] G. C. Ramadas and E. M. Fernandes, "Solving Nonlinear Equations by a Tabu Search Strategy," in 11th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE2011, vol. 4, no. 1, Jun. 2011, pp. 1578-1589.
[3] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, "Testing Unconstrained Optimization Software," ACM Transactions on Mathematical Software, vol. 7, no. 1, pp. 17-41, 1981. [Online]. Available: http://doi.acm.org/10.1145/355934.355936
[4] Ali R. Alroomi, "The Farm of Unconstrained Benchmark Functions," University of Bahrain, Electrical and Electronics Department, Bahrain, Oct. 2013. [Online]. Available: http://www.al-roomi.org/cv/publications