- Parent Category: Unconstrained
- Category: n-Dimensions
- Hits: 15006
Generalized Griewank's Function
I. Mathematical Expression:
$$f(X)=\frac{1}{4000}\sum_{i=1}^{n}x^2_i-\prod_{i=1}^{n}\cos\left(\frac{x_i}{\sqrt{i}}\right)+1$$
where:
\(\bullet\) \(-600\leq x_i\leq 600\) , \(i=1,2,\cdots,n\)
\(\bullet\) \(f_{min}(X^*)=0\)
\(\bullet\) \(x^*_i =0\)
\(\bullet\) The original reference [1] considers different starting points for the traditional optimization techniques. Today, in the literature, many references generalized this function with variable bounds of \(X \in [-600,600]\). However, some other references consider different side constraints, like \(X \in [-100,100]\) as in [7].
II. Citation Policy:
If you publish material based on databases obtained from this repository, then, in your acknowledgments, please note the assistance you received by using this repository. This will help others to obtain the same data sets and replicate your experiments. We suggest the following pseudo-APA reference format for referring to this repository:
Ali R. Al-Roomi (2015). Unconstrained Single-Objective Benchmark Functions Repository [https://www.al-roomi.org/benchmarks/unconstrained]. Halifax, Nova Scotia, Canada: Dalhousie University, Electrical and Computer Engineering.
Here is a BiBTeX citation as well:
@MISC{Al-Roomi2015,
author = {Ali R. Al-Roomi},
title = {{Unconstrained Single-Objective Benchmark Functions Repository}},
year = {2015},
address = {Halifax, Nova Scotia, Canada},
institution = {Dalhousie University, Electrical and Computer Engineering},
url = {https://www.al-roomi.org/benchmarks/unconstrained}
}
III. 2&3D-Plots:
IV. Controllable 3D Model:
- In case you want to adjust the rendering mode, camera position, background color or/and 3D measurement tool, please check the following link
- In case you face any problem to run this model on your internet browser (it does not work on mobile phones), please check the following link
V. MATLAB M-File:
% Generalized Griewank's Function
% Range of initial points: -600 <= xj <= 600 , j=1,2,...,n
% Global minima: (x1,x2,...,xn)=0
% f(X)=0
% Coded by: Ali R. Alroomi | Last Update: 04 June 2015 | www.al-roomi.org
clear
clc
warning off
x1min=-600;
x1max=600;
x2min=-600;
x2max=600;
R=1500; % steps resolution
x1=x1min:(x1max-x1min)/R:x1max;
x2=x2min:(x2max-x2min)/R:x2max;
for j=1:length(x1)
% For 1-dimensional plotting
f1(j)=(x1(j)^2/4000)-cos(x1(j))+1;
% For 2-dimensional plotting
for i=1:length(x2)
fsum(i)=x1(j)^2+x2(i)^2;
fprod(i)=cos(x1(j)/sqrt(1))*cos(x2(i)/sqrt(2));
fn(i)=(sum(fsum(i))/4000)-prod(fprod(i))+1;
end
fn_tot(j,:)=fn;
end
figure(1)
plot(x1,f1);set(gca,'FontSize',12);
xlabel('x','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('f(x)','FontName','Times','FontSize',20,'FontAngle','italic');
title('2D View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(2)
meshc(x1,x2,fn_tot);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
set(get(gca,'xlabel'),'rotation',25,'VerticalAlignment','bottom');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
set(get(gca,'ylabel'),'rotation',-25,'VerticalAlignment','bottom');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('3D View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(3)
mesh(x1,x2,fn_tot);view(0,90);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('X-Y Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(4)
mesh(x1,x2,fn_tot);view(90,0);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('X-Z Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(5)
mesh(x1,x2,fn_tot);view(0,0);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('Y-Z Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
VI. References:
[1] A. O. Griewank, "Generalized Descent for Global Optimization," Journal of Optimization Theory and Applications (JOTA), vol. 34, no. 1, pp. 11-39, May 1981.
[2] X. Yao, Y. Liu, and G. Lin, "Evolutionary Programming Made Faster," IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82-102, Jul. 1999.
[3] M. M. Ali, C. Khompatraporn, and Z. B. Zabinsky, "A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems," Journal of Global Optimization, vol. 31, no. 4, pp. 635-672, Apr. 2005.
[4] M. Subotic, M. Tuba, and N. Stanarevic, "Different Approaches in Parallelization of the Artificial Bee Colony Algorithm," International Journal of Mathematical Models and Methods in Applied Sciences, vol. 5, no. 4, pp. 755-762, Mar. 2011.
[5] X. Zhao and X.-S. Gao, "Affinity Genetic Algorithm," Journal of Heuristics, vol. 13, no. 2, pp.133-150, Apr. 2007.
[6] D. Simon, Evolutionary Optimization Algorithms: Biologically-Inspired and Population-Based Approaches to Computer Intelligence. Hoboken, New Jersey: John Wiley & Sons Inc, 2013.
[7] M. Jamil and X. S. Yang, "A Literature Survey of Benchmark Functions for Global Optimization Problems," International Journal of Mathematical Modelling and Numerical Optimisation, vol. 4, no. 2, pp. 150–194, Aug. 2013.
[8] A. Gavana, "Test Functions Index," Feb. 2013, [Accessed April 01, 2013]. [Online]. Available: http://infinity77.net/global_optimization/test_functions.html
[9] Ali R. Alroomi, "The Farm of Unconstrained Benchmark Functions," University of Bahrain, Electrical and Electronics Department, Bahrain, Oct. 2013. [Online]. Available: http://www.al-roomi.org/cv/publications