- Parent Category: Unconstrained
- Category: n-Dimensions
- Hits: 13456
Schwefel's Function No.2.21 (or MaxMod Function)
I. Mathematical Expression:
$$f(X)=\text{max}\left\{\left|x_i\right|,1\leq i\leq n\right\}$$
where:
\(\bullet\) \(-100\leq x_i\leq 100\) , \(i=1,2,\cdots,n\)
\(\bullet\) \(f_{min}(X^*)=0\)
\(\bullet\) \(x^*_i =0\)
II. Citation Policy:
If you publish material based on databases obtained from this repository, then, in your acknowledgments, please note the assistance you received by using this repository. This will help others to obtain the same data sets and replicate your experiments. We suggest the following pseudo-APA reference format for referring to this repository:
Ali R. Al-Roomi (2015). Unconstrained Single-Objective Benchmark Functions Repository [https://www.al-roomi.org/benchmarks/unconstrained]. Halifax, Nova Scotia, Canada: Dalhousie University, Electrical and Computer Engineering.
Here is a BiBTeX citation as well:
@MISC{Al-Roomi2015,
author = {Ali R. Al-Roomi},
title = {{Unconstrained Single-Objective Benchmark Functions Repository}},
year = {2015},
address = {Halifax, Nova Scotia, Canada},
institution = {Dalhousie University, Electrical and Computer Engineering},
url = {https://www.al-roomi.org/benchmarks/unconstrained}
}
III. 2&3D-Plots:
IV. Controllable 3D Model:
- In case you want to adjust the rendering mode, camera position, background color or/and 3D measurement tool, please check the following link
- In case you face any problem to run this model on your internet browser (it does not work on mobile phones), please check the following link
V. MATLAB M-File:
% Schwefel's Problem # 2.21
% Range of initial points: -100 <= xj <= 100 , j=1,2,...,n
% Global minima: (x1,x2,...,xn)=0
% f(X)=0
% Coded by: Ali R. Alroomi | Last Update: 08 June 2015 | www.al-roomi.org
clear
clc
warning off
x1min=-100;
x1max=100;
x2min=-100;
x2max=100;
R=1500; % steps resolution
x1=x1min:(x1max-x1min)/R:x1max;
x2=x2min:(x2max-x2min)/R:x2max;
for j=1:length(x1)
% For 1-dimensional plotting
f1(j)=abs(x1(j));
% For 2-dimensional plotting
for i=1:length(x2)
fn(i)=max(abs([x1(j),x2(i)]));
end
fn_tot(j,:)=fn;
end
figure(1)
plot(x1,f1);set(gca,'FontSize',12);
xlabel('x','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('f(x)','FontName','Times','FontSize',20,'FontAngle','italic');
title('2D View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(2)
meshc(x1,x2,fn_tot);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
set(get(gca,'xlabel'),'rotation',25,'VerticalAlignment','bottom');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
set(get(gca,'ylabel'),'rotation',-25,'VerticalAlignment','bottom');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('3D View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(3)
mesh(x1,x2,fn_tot);view(0,90);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('X-Y Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(4)
mesh(x1,x2,fn_tot);view(90,0);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('X-Z Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(5)
mesh(x1,x2,fn_tot);view(0,0);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('Y-Z Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
VI. References:
[1] X. Yao, Y. Liu, and G. Lin, "Evolutionary Programming Made Faster," IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82-102, Jul. 1999.
[2] E. P. Adorio, "MVF - Multivariate Test Functions Library in C for Unconstrained Global Optimization," Quezon City, Metro Manila, Philippines, Jan. 2005. [Online]. Available: http://geocities.ws/eadorio/mvf.pdf
[3] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, "A Novel Population Initialization Method for Accelerating Evolutionary Algorithms," Computers & Mathematics with Applications, vol. 53, no. 10, pp. 1605-1614, May 2007.
[4] A. K. Qin, V. L. Huang, and P. Suganthan, "Differential Evolution Algorithm with Strategy Adaptation for Global Numerical Optimization," IEEE Transactions on Evolutionary Computation, vol. 13, no. 2, pp. 398-417, April 2009.
[5] Juan F. R. Herrera, Leocadio G. Casado, Eligius M. T. Hendrix, and Inmaculada GarcĂa, "Heuristics for Longest Edge Selection in Simplicial Branch and Bound," in Computational Science and Its Applications -- ICCSA 2015 (series. Lecture Notes in Computer Science, vol. 9156), Osvaldo Gervasi et al. Banff, Alberta, Canada: Springer International Publishing, 2015, pp. 445-456.
[5] Ali R. Alroomi, "The Farm of Unconstrained Benchmark Functions," University of Bahrain, Electrical and Electronics Department, Bahrain, Oct. 2013. [Online]. Available: http://www.al-roomi.org/cv/publications