- Parent Category: Unconstrained
- Category: n-Dimensions
- Hits: 4923
Deflected Corrugated Spring Function
I. Mathematical Expression:
$$f(X)=0.1\times\sum_{i=1}^{n}\left(x_i-\alpha\right)^2-\cos\left(k\times\sqrt{\sum_{i=1}^{n}\left(x_i-\alpha\right)^2}\right)$$
where:
\(\bullet\) Both \(\alpha\) and \(k\) are equal to \(5\)
\(\bullet\) \(0\leq x_i\leq 2\alpha\) , \(i=1,2,\cdots,n\)
\(\bullet\) \(f_{min}(X^*)=-1\)
\(\bullet\) \(x^*_i =\alpha\)
II. Citation Policy:
If you publish material based on databases obtained from this repository, then, in your acknowledgments, please note the assistance you received by using this repository. This will help others to obtain the same data sets and replicate your experiments. We suggest the following pseudo-APA reference format for referring to this repository:
Ali R. Al-Roomi (2015). Unconstrained Single-Objective Benchmark Functions Repository [https://www.al-roomi.org/benchmarks/unconstrained]. Halifax, Nova Scotia, Canada: Dalhousie University, Electrical and Computer Engineering.
Here is a BiBTeX citation as well:
@MISC{Al-Roomi2015,
author = {Ali R. Al-Roomi},
title = {{Unconstrained Single-Objective Benchmark Functions Repository}},
year = {2015},
address = {Halifax, Nova Scotia, Canada},
institution = {Dalhousie University, Electrical and Computer Engineering},
url = {https://www.al-roomi.org/benchmarks/unconstrained}
}
III. 2&3D-Plots:
IV. Controllable 3D Model:
- In case you want to adjust the rendering mode, camera position, background color or/and 3D measurement tool, please check the following link
- In case you face any problem to run this model on your internet browser (it does not work on mobile phones), please check the following link
V. MATLAB M-File:
% Deflected Corrugated Spring Function
% Range of initial points: 0 <= xj <= 2*alpha , j=1,2,...,n
% Global minima: (x1,x2,...,xn)=alpha
% f(X)=-1
% Coded by: Ali R. Alroomi | Last Update: 15 June 2015 | www.al-roomi.org
clear
clc
warning off
alpha=5;
k=5;
x1min=0;
x1max=2*alpha;
x2min=0;
x2max=2*alpha;
R=1500; % steps resolution
x1=x1min:(x1max-x1min)/R:x1max;
x2=x2min:(x2max-x2min)/R:x2max;
for j=1:length(x1)
% For 1-dimensional plotting
f1(j)=0.1*(x1(j)-alpha)^2-cos(k*(x1(j)-alpha)^2);
% For 2-dimensional plotting
for i=1:length(x2)
SqSum=sqrt((x1(j)-alpha)^2+(x2(i)-alpha)^2);
fn(i)=0.1*SqSum^2-cos(k*SqSum);
end
fn_tot(j,:)=fn;
end
figure(1)
plot(x1,f1,'r','LineWidth',2);set(gca,'FontSize',12);
xlabel('x','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('f(x)','FontName','Times','FontSize',20,'FontAngle','italic');
title('2D View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(2)
meshc(x1,x2,fn_tot);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
set(get(gca,'xlabel'),'rotation',25,'VerticalAlignment','bottom');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
set(get(gca,'ylabel'),'rotation',-25,'VerticalAlignment','bottom');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('3D View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(3)
mesh(x1,x2,fn_tot);view(0,90);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('X-Y Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(4)
mesh(x1,x2,fn_tot);view(90,0);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('X-Z Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(5)
mesh(x1,x2,fn_tot);view(0,0);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('Y-Z Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
VI. References:
[1] A. D. Belegundu and T. R. Chandrupatla, Optimization Concepts and Applications in Engineering, 2nd ed. New York: Cambridge University Press, 2011.
[2] W. Wan and J. B. Birch, "Using a Modified Genetic Algorithm to Find Feasible Regions of a Desirability Function," Quality and Reliability Engineering International, vol. 27, no. 8, pp. 1173-1182, Dec. 2011.
[3] Ali R. Alroomi, "The Farm of Unconstrained Benchmark Functions," University of Bahrain, Electrical and Electronics Department, Bahrain, Oct. 2013. [Online]. Available: http://www.al-roomi.org/cv/publications