- Parent Category: Unconstrained
- Category: 2-Dimensions
- Hits: 14886
Himmelblau's Function
I. Mathematical Expression:
$$f(X)=\left(x_1+x^2_2-7\right)^2+\left(x^2_1+x_2-11\right)^2$$
where:
\(\bullet\) \(-6\leq x_i\leq 6\) , \(i=1,2\)
\(\bullet\) It has four global minimum: \(f_{min}(X^*)=0\)
\(\bullet\) \(x^*_i= (3,2), (3.584428340330,-1.848126526964), (-3.779310253378,\)
\(-3.283185991286), (-2.805118086953,3.131312518250)\)
II. Citation Policy:
If you publish material based on databases obtained from this repository, then, in your acknowledgments, please note the assistance you received by using this repository. This will help others to obtain the same data sets and replicate your experiments. We suggest the following pseudo-APA reference format for referring to this repository:
Ali R. Al-Roomi (2015). Unconstrained Single-Objective Benchmark Functions Repository [https://www.al-roomi.org/benchmarks/unconstrained]. Halifax, Nova Scotia, Canada: Dalhousie University, Electrical and Computer Engineering.
Here is a BiBTeX citation as well:
@MISC{Al-Roomi2015,
author = {Ali R. Al-Roomi},
title = {{Unconstrained Single-Objective Benchmark Functions Repository}},
year = {2015},
address = {Halifax, Nova Scotia, Canada},
institution = {Dalhousie University, Electrical and Computer Engineering},
url = {https://www.al-roomi.org/benchmarks/unconstrained}
}
III. 2&3D-Plots:
IV. Controllable 3D Model:
- In case you want to adjust the rendering mode, camera position, background color or/and 3D measurement tool, please check the following link
- In case you face any problem to run this model on your internet browser (it does not work on mobile phones), please check the following link
V. MATLAB M-File:
% Himmelblau's Function
% Range of initial points: -6 <= xj <= 6 , j=1,2
% It has 4 global minimum: (x1,x2)=(3,2),(3.584428340330,-1.848126526964),
% (-3.779310253378,-3.283185991286),(-2.805118086953,3.131312518250)
% f(x1,x2)=0
% Coded by: Ali R. Alroomi | Last Update: 24 March 2015 | www.al-roomi.org
clear
clc
warning off
x1min=-6;
x1max=6;
x2min=-6;
x2max=6;
R=1500; % steps resolution
x1=x1min:(x1max-x1min)/R:x1max;
x2=x2min:(x2max-x2min)/R:x2max;
for j=1:length(x1)
for i=1:length(x2)
f(i)=((x1(j)+x2(i).^2-7).^2)+((x1(j).^2+x2(i)-11).^2);
end
f_tot(j,:)=f;
end
figure(1)
meshc(x1,x2,f_tot);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
set(get(gca,'xlabel'),'rotation',25,'VerticalAlignment','bottom');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
set(get(gca,'ylabel'),'rotation',-25,'VerticalAlignment','bottom');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('3D View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(2)
mesh(x1,x2,f_tot);view(0,90);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('X-Y Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(3)
mesh(x1,x2,f_tot);view(90,0);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('X-Z Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(4)
mesh(x1,x2,f_tot);view(0,0);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('Y-Z Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
VI. References:
[1] M. B. Trabia and X. B. Lu, "A Fuzzy Adaptive Simplex Search Optimization Algorithm," Journal of Mechanical Design, vol. 123, no. 2, pp. 1-10, Jun. 2001.
[2] E. Kiseleva and T. Stepanchuk, "On the Efficiency of a Global Non-Differentiable Optimization Algorithm Based on the Method of Optimal Set Partitioning," Journal of Global Optimization, vol. 25, no. 2, pp. 209-235, Feb. 2003.
[3] E. P. Adorio, "MVF - Multivariate Test Functions Library in C for Unconstrained Global Optimization," Quezon City, Metro Manila, Philippines, Jan. 2005. [Online]. Available: http://geocities.ws/eadorio/mvf.pdf
[4] Z. Emami, M. H. Farahi, and E. Ansari, "Global Optimization with Electro Weak," The Open Industrial and Manufacturing Engineering Journal, vol. 5, pp. 1-7, Feb. 2012. [Online]. Available: http://benthamscience.com/open/toimej/articles/V005/1TOIMEJ.pdf
[5] M. F. P. Costa, F. P. Fernandes, and E. M. da G. P. Fernandes, "A Deterministic-Stochastic Method for Nonconvex MINLP problems," in 2nd International Conference on Engineering Optimization, Sept. 2010, pp. 1-10.
[6] K. Madsen, "Test Problems for Global Optimization," Jun. 2008, [Accessed April 09, 2013]. [Online]. Available: http://www2.imm.dtu.dk/~kajm/Test_ex_forms/test_ex.html
[7] A. Gavana, "Test functions index," Feb. 2013, [Accessed April 01, 2013]. [Online]. Available: http://infinity77.net/global_optimization/test_functions.html
[8] Ali R. Alroomi, "The Farm of Unconstrained Benchmark Functions," University of Bahrain, Electrical and Electronics Department, Bahrain, Oct. 2013. [Online]. Available: http://www.al-roomi.org/cv/publications