- Parent Category: Unconstrained
- Category: n-Dimensions
- Hits: 10940
Generalized Modified Rosenbrock's Function No.01 (or Flat-Ground Bent Knife-Edge Function)
I. Mathematical Expression:
$$f(X)=\sum^{n-1}_{i=1}\left[100 \left|x_{i+1} - x_i^2\right| + \left(1-x_i\right)^2\right]$$
where:
\(\bullet\) \(-2000\leq x_i\leq 2000\) , \(i=1,2,\cdots,n\)
\(\bullet\) \(f_{min}(X^*)=1\)
\(\bullet\) \(x^*_i =0\)
\(\bullet\) In [2], the huge side constraints are reduced to be \(X \in [-30,30]\).
II. Citation Policy:
If you publish material based on databases obtained from this repository, then, in your acknowledgments, please note the assistance you received by using this repository. This will help others to obtain the same data sets and replicate your experiments. We suggest the following pseudo-APA reference format for referring to this repository:
Ali R. Al-Roomi (2015). Unconstrained Single-Objective Benchmark Functions Repository [https://www.al-roomi.org/benchmarks/unconstrained]. Halifax, Nova Scotia, Canada: Dalhousie University, Electrical and Computer Engineering.
Here is a BiBTeX citation as well:
@MISC{Al-Roomi2015,
author = {Ali R. Al-Roomi},
title = {{Unconstrained Single-Objective Benchmark Functions Repository}},
year = {2015},
address = {Halifax, Nova Scotia, Canada},
institution = {Dalhousie University, Electrical and Computer Engineering},
url = {https://www.al-roomi.org/benchmarks/unconstrained}
}
III. 2&3D-Plots:
IV. Controllable 3D Model:
- In case you want to adjust the rendering mode, camera position, background color or/and 3D measurement tool, please check the following link
- In case you face any problem to run this model on your internet browser (it does not work on mobile phones), please check the following link
V. MATLAB M-File:
% Generalized Modified Rosenbrock's # 1 (or Flat-Ground Bent Knife-Edge) Function
% Range of initial points: -30 < xj < 30 , j=1,2,...,n
% Global minima: (x1,x2,...,xn)=1
% f(X)=0
% Coded by: Ali R. Alroomi | Last Update: 08 June 2015 | www.al-roomi.org
clear
clc
warning off
x1min=-2.048;
x1max=2.048;
x2min=-2.048;
x2max=2.048;
R=1500; % steps resolution
x1=x1min:(x1max-x1min)/R:x1max;
x2=x2min:(x2max-x2min)/R:x2max;
for j=1:length(x1)
for i=1:length(x2)
f(i)=100*abs(x2(i)-x1(j)*x1(j))+(1-x1(j)).^2;
end
f_tot(j,:)=f;
end
% 1-dimensional plot is not applicable with this benchmark function
figure(1)
meshc(x1,x2,f_tot);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
set(get(gca,'xlabel'),'rotation',25,'VerticalAlignment','bottom');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
set(get(gca,'ylabel'),'rotation',-25,'VerticalAlignment','bottom');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('3D View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(2)
mesh(x1,x2,f_tot);view(0,90);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('X-Y Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(3)
mesh(x1,x2,f_tot);view(90,0);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('X-Z Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
figure(4)
mesh(x1,x2,f_tot);view(0,0);colorbar;set(gca,'FontSize',12);
xlabel('x_2','FontName','Times','FontSize',20,'FontAngle','italic');
ylabel('x_1','FontName','Times','FontSize',20,'FontAngle','italic');
zlabel('f(X)','FontName','Times','FontSize',20,'FontAngle','italic');
title('Y-Z Plane View','FontName','Times','FontSize',24,'FontWeight','bold');
VI. References:
[1] David R. Monismith JR., "The Uses of the Slime Mold Lifecycle as a Model for Numerical Optimization," Ph.D. Dissertation, Oklahoma State University, Oklahoma City, OK, 2010, [Accessed May 11, 2015]. [Online]. Available: https://shareok.org/bitstream/handle/11244/6493/Computer%20Science%20Department_11.pdf
[2] Debao Chen, "Comparisons Among Stochastic Optimization Algorithms," Master Thesis, Oklahoma State University, Oklahoma City, OK, Dec. 1997, [Accessed July 18, 2015]. [Online]. Available: https://shareok.org/bitstream/handle/11244/12214/Thesis-1997-C51705c.pdf
[3] Ali R. Alroomi, "The Farm of Unconstrained Benchmark Functions," University of Bahrain, Electrical and Electronics Department, Bahrain, Oct. 2013. [Online]. Available: http://www.al-roomi.org/cv/publications